

Security
Audit Report

Tronado - ERC20 Token Audit

​
​

Version: Final

Date: 17th March 2025

Table of Contents

Table of Contents​ 2
License​ 3
Disclaimer​ 4
Introduction​ 5
Codebases Submitted for the Audit​ 6
How to Read This Report​ 7
Overview​ 8
Summary of Findings​ 9
Detailed Findings​ 10

1. Missing Event Emission​ 10

2

License
​ ​ ​ ​ ​ ​

THIS WORK IS LICENSED UNDER A CREATIVE COMMONS ATTRIBUTION-NODERIVATIVES 4.0
INTERNATIONAL LICENSE.

3

Disclaimer
THE CONTENT OF THIS AUDIT REPORT IS PROVIDED “AS IS”, WITHOUT REPRESENTATIONS AND
WARRANTIES OF ANY KIND.

​ ​ ​ ​ ​ ​

THE AUTHOR AND HIS EMPLOYER DISCLAIM ANY LIABILITY FOR DAMAGE ARISING OUT OF, OR IN
CONNECTION WITH, THIS AUDIT REPORT.

​ ​ ​ ​ ​ ​

COPYRIGHT OF THIS REPORT REMAINS WITH THE AUTHOR.

4

Introduction
Purpose of this report

0xCommit has been engaged by Tronado Token Contact to perform a security audit of several
Solana Programs components.

The objectives of the audit are as follows:

1.​ Determine the correct functioning of the protocol, in accordance with the project
specification.

2.​ Determine possible vulnerabilities, which could be exploited by an attacker.

3.​ Determine solana program bugs, which might lead to unexpected behaviour.

4.​ Analyze whether best practices have been applied during development.

5.​ Make recommendations to improve code safety and readability.

This report represents a summary of the findings.

As with any code audit, there is a limit to which vulnerabilities can be found, and unexpected
execution paths may still be possible. The author of this report does not guarantee complete
coverage (see disclaimer).

5

Codebases Submitted for the Audit
The audit has been performed on the following GitHub repositories:

Version List of contracts Source

1
0xC396b3198b5Bd60CF2cDaB9b34F646A58C029
998 - On Polygon Network

https://polygonscan.com/address/0xC396b319
8b5Bd60CF2cDaB9b34F646A58C029998#cod
e#L1

2 0x238ad4b7b3883bf1946b6eefd396deee28824b1
2 - On Polygon network

[https://cardona-zkevm.polygonscan.com/addr
ess/0x238ad4b7b3883bf1946b6eefd396deee2
8824b12]

6

How to Read This Report
This report classifies the issues found into the following severity categories:

Severity Description

Critical A serious and exploitable vulnerability that can lead to loss of funds, unrecoverable locked funds,
or catastrophic denial of service.

Major A vulnerability or bug that can affect the correct functioning of the system, lead to incorrect states
or denial of service.

Minor A violation of common best practices or incorrect usage of primitives, which may not currently have
a major impact on security, but may do so in the future or introduce inefficiencies.

Informational Comments and recommendations of design decisions or potential optimizations, that are not
relevant to security. Their application may improve aspects, such as user experience or readability,
but is not strictly necessary. This category may also include opinionated recommendations that
the project team might not share.

The status of an issue can be one of the following: Pending, Acknowledged, or Resolved.

Note that audits are an important step to improving the security of smart contracts and can find
many issues. However, auditing complex codebases has its limits and a remaining risk is present
(see disclaimer).

Users of the system should exercise caution. In order to help with the evaluation of the remaining
risk, we provide a measure of the following key indicators: code complexity, code readability,
level of documentation, and test coverage. We include a table with these criteria below.

Note that high complexity or low test coverage does not necessarily equate to a higher risk,
although certain bugs are more easily detected in unit testing than in a security audit and vice
versa.

7

Overview

Methodology

The audit has been performed in the following steps:

1.​ Gaining an understanding of the code base’s intended purpose by reading the available
documentation.

2.​ Automated source code and dependency analysis.

3.​ Manual line by line analysis of the source code for security vulnerabilities and use of best
practice guidelines, including but not limited to:

a.​ Race condition analysis

b.​ Under-/overflow issues

c.​ Key management vulnerabilities

4.​ Report preparation

8

Summary of Findings

Sr.
No.

Description Severity Status

1 Missing SafeMath or Explicit Overflow
Protection Low Resolved

2 Non-Compliance with ERC20 Standard
 Low Resolved

3 Missing Events during initialization
 Low Resolved

4 Missing documentation
 Informational Resolved

5 Gas Optimizations documentation
 Informational Resolved

6 Ancillary ERC20 Checks
 Informational

9

Detailed Findings

1. Missing SafeMath or Explicit Overflow Protection

Severity: ​ ​ ​ ​ ​ ​ ​ ​ Low

Description

While Solidity ^0.8.0 includes built-in overflow and underflow protection, explicit checks in critical
functions provide an additional layer of security as a defensive programming practice.

Remediation

Add explicit checks for mathematical operations or implement SafeMath Library

Status

 Resolved

10

2. Non-Compliance with ERC20 Standard

Severity: ​ ​ ​ ​ ​ ​ ​ ​ Low

Description

The contract does not fully comply with the ERC20 standard. It fails to implement the interface
properly and is missing the totalSupply() function required by the standard. This might affect
interoperability with other contracts and platforms.

Remediation

Explicitly implement the IERC20 interface and include all required functions. Or use
OpenZeppelin’s ERC20 Implementation.

Status

 Resolved

11

3. Missing Events during initialization

Severity: ​ ​ ​ ​ ​ ​ ​ ​ Low

Description

The contract does not emit events for critical contract initialization and parameter changes. This
makes it difficult for off-chain applications to track important contract state changes.

Remediation

Have transfer emitted during contract initialization.

Status

 Resolved

12

4. Missing documentation

Severity: ​ ​ ​ ​ ​ ​ ​ ​ Low

Description

The contract has limited inline documentation for functions and lacks comprehensive NatSpec
comments. This makes it difficult for reviewers, auditors, and developers to understand the
contract's functionality and intent.

Remediation

Add Comprehensive NatSpec based documentation for all functions, events and variables in the
contract.

Status

Resolved

13

5. Gas Optimizations documentation

Severity: ​ ​ ​ ​ ​ ​ ​ ​ Informational

Description

Several functions in the contract could be optimized for gas efficiency.

Remediation

1.​ Use uint256 instead of uint8 for decimals to save gas (though this is a common practice)
2.​ Mark constant values as constant or immutable:

string public constant name = "TRONADO";
string public constant symbol = "TRDO";
uint8 public constant decimals = 18;

3.​ Consider using memory variables in functions with multiple state changes:

function transferFrom(address from, address to, uint256 amount)
public returns (bool) {
 require(to != address(0), "Transfer to the zero address is
not allowed");
 uint256 currentAllowance = allowances[from][msg.sender];
 require(currentAllowance >= amount, "Transfer amount exceeds
allowance");
 unchecked {
 allowances[from][msg.sender] = currentAllowance -
amount;
 }
 _transfer(from, to, amount);
 return true;
}

4.​ Update function visibility for external-facing functions. (i.e. -Use external instead of public).

Status

Resolved

14

6. Ancillary Checks

Severity: ​ Informational

Sr No Checks Status

1 Source Code Verified Yes

2 Is Upgradeable No

3 Token Contract Mintable No

4 Admin Balance Change No

5 Token Backdoor Identified No

6 Is token contract self destructable No

7 Is gas intensive contract No

8 Does token contract has external call risk No

9 Is Suspension of token feasible No

10 Has trading cool down No

11 Has Anti whale functions No

12 Has any tax component No

13 Has Blacklist No

14 Has Whitelist No

15

	Security
	Audit Report
	Table of Contents
	License
	Disclaimer
	Introduction
	Purpose of this report

	Codebases Submitted for the Audit
	1
	2

	How to Read This Report
	Critical
	A serious and exploitable vulnerability that can lead to loss of funds, unrecoverable locked funds, or catastrophic denial of service.
	Major
	A vulnerability or bug that can affect the correct functioning of the system, lead to incorrect states or denial of service.
	Minor
	A violation of common best practices or incorrect usage of primitives, which may not currently have a major impact on security, but may do so in the future or introduce inefficiencies.
	Informational
	Comments and recommendations of design decisions or potential optimizations, that are not relevant to security. Their application may improve aspects, such as user experience or readability, but is not strictly necessary. This category may also include opinionated recommendations that the project team might not share.

	Overview
	Methodology

	Summary of Findings
	Low
	Low
	Low
	Informational
	Informational
	Informational

	Detailed Findings
	1. Missing SafeMath or Explicit Overflow Protection
	Severity: Low ​​​​​​​​
	Description

	Resolved
	2. Non-Compliance with ERC20 Standard
	Severity: Low ​​​​​​​​
	Description

	Resolved
	3. Missing Events during initialization
	Severity: Low ​​​​​​​​
	Description

	Resolved
	4. Missing documentation
	Severity: Low ​​​​​​​​
	Description

	Resolved5. Gas Optimizations documentation
	Severity: Informational ​​​​​​​​
	Description

	Resolved6. Ancillary Checks
	Severity: Informational ​

	

